
Element Containers

Class

+ attribute1:type = defaultValue
+ attribute2:type
- attribute3:type

+ operation1(params):returnType
- operation2(params)
- operation3()

Class

Class

This container is to be used when displaying the members of a class.

The top section of the container is used for attributes (fields and
properties) The section below that is for methods.

Usually we only indicate members up to the public level. To indicate
additional access modifiers the following must be used.

+ Public
- Private
Protected
Protected (Overridable)
Static

Types - The order of the signature is not enforced. You can define
name : type or type : name. As long as its consistent within the
diagram for all signatures fields and methods.

When doing a high level diagram or when the members are not needed on
the diagram one can use this type of container for a class.

The active class container indicates that when the class is instantiated it
would be in control of its own execution and will be running on its own

thread - separate from the rest of the objects on the diagram.

An example of such a class is a webservice class that might be on the
diagram.

Lucid charts do not support double borders on the class container. To
indicate an active class i suggest a thicker border.

Class

+ attribute1:type = defaultValue
+ attribute2:type
- attribute3:type

+ operation1(params):returnType
- operation2(params)
- operation3()

<<interface>>
Interface

operation1(params):returnType
operation2(params)
operation3()

Use the following container when describing the members of an interface.

When working at a high level or when the detail of the active class is not
required the follow container can be used.

To be able to communicate additional type information we can use stereo typing. Stereo typing is used to refine the meaning of a model
element by adding the following '<<description>>' tags above the element name. Example - One of the most common known stereo

types is that of <<Interface>>

Here follows a list of the stereo types that we will support.

<<abstract>>
Class

Stereo Typing

<<abstract>>
Class

<<interface>>
Interface

<<enumeration>>
Interface

<<static>>
Class

<<servicecontract>>
Interface

Use Interface
Container

Use Interface
Container

<<singleton>>
Class

<<datacontract>>
Class

Use Interface
Container.

Datacontracts should
not have methods.

<<interface>>
Interface

<<static>>
Class

<<enumeration>>
Interface

<<servicecontract>>
Interface

<<datacontract>>
Class

<<singleton>>
Class

<<extension>>
Class

<<ExtensionMethod>> Operation(this Type1) : void

<<interface>>
IAnimal

Name : String
Action () : void

Inheritance

Animal

When inheriting from an interface use the same method to indicate
inheritance as with classes when the interface and its members are
on the document.

Note that inherited members are not duplicated in derived types.

Animal

IAnimal When inheriting from an interface use the lollypop notation to
indicate inheritance when:

1. The interface with its members are not defined on the diagram.

2. The lines to the Interface on the diagram would make the
diagram look to complex.

Note that with this notation the inheritance line comes of the side of
the container.

Animal

Mammal Reptile

Inheritance are always depicted using solid lines and a arrow heads.
Arrow heads always point in the direction of the super class.
Do not combine lines from derived types rather keep them seperate.

Inheritance should always be depicted in a top down manner. The derived types must always be below the super class.

Animal

<<interface>>
IAnimal This notation is only allowed with interfaces in high level overviews

where one wants to show relationships that the lollypop notation
cannot prvide.

<<uses>>

IAnimalAction

GameParkRanger

DoSomething(Animal : Animal)

Aggregation

Aggregation is depicted using a clear diamond in the
direction of the element that holds the reference and

usually connects to the side of the element.

 Aggregation indicates relationships, not ownership. It
is possible to have relationship references in both

directions. When inheritance takes place aggregation
is only indicated at the highest level and not in derived

types.

Composition depicts ownership by using a solid
diamond. The solid diamond is connected to the side
of the owner element. The owner is in control of the

existence and lifetime of the other element. If it
created it, it is responsible to destroy it.

This is a one way relationship and only one of the
elements can be the owner. When inheritance takes

place composition is only indicated at the highest
level and not in derived types.

GamePark

Rangers : List<GameParkRanger>
GameParkRanger

GamePark

Animals : List<Animal> Animal

Composition, Aggregation and Usage should be displayed by connecting to the sides of the UML containers.

Composition

Usage

Animal<<uses>>

GameParkRanger

DoSomething(Animal : IAnimal)

<<uses>>

IAnimal

GameParkRanger

DoSomething(Animal : IAnimal)

<<interface>>
IAnimal

Name : String
Action () : void

<<uses>>

Normally this is depcited with a solid line and and a half
circle but due to lucid charts not supporting it i suggest

we use the following notation.

Usage is depicted using a dashed line with an open
arrow in the direction of the class being used.

Usage indicates that either the type or instance of
class is going to be used for the duration of a

method.

Variations exist for the usage with an interface.

Note the difference between aggregation and
usage is that usage does not maintain a reference
to the other element for the lifetime of the object.
Relationships to Enumerations always use usage

When inheritance takes place usage is only
indicated at the highest level and not in derived

types.

Please use the following colour guide where possible and supply a legend at the top right of your diagram with the assembly name or
grouping description inside the colour block.

Colours must indicate which entities are grouped together in an assembly. If assemblies have not been identified or if no
additional colours are needed then please use the example below.

In situations where more colours are needed for a diagram feel free to use your own colours just be sure to supply a legend at the top right
of your diagram.

Contracts

Services

Business Objects

Data Objects

Elements shown on the diagram that does not fall in the scope of the task. Used for items that
are added for information purpose only.

Elements to which you wish to draw attention. It does not need to be every element that has a
note attached. You need to decide if you want to highlight it for a reason.

User Interface

<<interface>>
ServiceInterface

Service Manager Engine DAO

<<DataContract>>
DataContract

<<uses>>

<<uses>>

Engine Some note..

Manager

Title Assima.Vimago.xxx.Contracts

Assima.Vimago.xxx.Service

Assima.Vimago.xxx

Assima.Vimago.xxx.Data

For information only

Point of interest

Below is an high level example of what a uml class diagram should look like when the standards have been followed.

IDisposable

